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VU CBCS Semester-IV 2019: Planck’s quantum, Planck’s constant and light as a collection of 

photons; Blackbody Radiation: Quantum theory of Light; Photo-electric effect and Compton scattering. 

De Broglie wavelength and matter waves; Davisson-Germer experiment. Wave description of particles 

by wave packets. Group and Phase velocities and relation between them. Two-Slit experiment with 

electrons. Probability. Wave amplitude and wave functions. 

Historical Note 

1. Situation towards the end of the 19th century and the beginning of the 20th century 

1.1 Advancement in Physics: 

 Classical mechanics:  

Newtonian Mechanics (Principia 1687-1713-1726; Sir Isaac Newton, English, 1643-1727) > 

Lagrangian Formulation (1750s) (Joseph-Louis Lagrange, Italian-French, 1736-1813) > 

Hamiltonian  Formulation (1833) (William Rowan Hamilton, Irish, 1805-1865) 

 Electrodynamics: 

Maxwell’s (James Clerk Maxwell, Scottish, 1831-1879) Equations of Electromagnetic waves 

[1861]. [In present form by Oliver Heaviside (English), Josiah W Gibbs (American), Heinrich 

Hertz (German, 1857-1894) in 1884] 

Lorentz (Dutch, 1853-1928) Force Equation [1861 Maxwell > 1881J. J. Thomson1 (English) > 

1884 Heaviside (English) > 1895 Lorentz] 

 Thermodynamics: 

Carnot Theorem (1824) [Nicolas Leonard Carnot, French 1796-1832], Maxwell-Boltzmann 

(Ludwig Eduard Boltzmann, German, 1844-1906) Statistics (1868). 

1.2. Major unsolved Questions: 

 Energy Distribution [𝑢(𝜈)𝑑𝜈  𝑜𝑟  𝑢(𝜆)𝑑𝜆] of Blackbody Radiation.  

 Photo electric effect: Experiment by German Physicist Hertz in 1887. 

 Stability of Rutherford’s (New Zealand-born British) atom (1911 Gold Foil Expt.). 

 Existence of aether: Michelson (American) –Morley (American) Experiment (1887, at Western 

Reserve University, Ohio). 

 Atomic Spectra: Balmer (Swiss Mathematician) series: 

Balmer formula (1885)   𝜆 = 𝐵 ቀ
௡మ

௡మି௠మቁ = 𝐵 ቀ
௡మ

௡మିଶమቁ  

Rydberg (Swedish Physicist) Formula (1888)   𝜈̅ =
ଵ

ఒ
=

ସ

஻
ቀ

ଵ

ଶమ −
ଵ

௡మቁ = 𝑅ு ቀ
ଵ

ଶమ −
ଵ

௡మቁ  

With 𝑅ு = 1.09737309 × 10଻ 𝑚ିଵ. 

Anomalous Zeeman (Dutch) effect, Fine structures and other observation in atomic 

spectroscopy. 

                                                             
1 William Thomson is a different scientist having other name Lord Kelvin, Scots-Irish, 1824-1907. 
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1.3 End of the era of triumph of classical physics. 

 1900 Planck (German) distribution formula of Blackbody Radiation > Assumption of radiation 

quanta of energy 𝒉𝝂, where 𝜈 is the frequency of radiation and ℎ is a constant determined by 

Planck to fit the experimental distribution curve and is called Planck constant. 

 1905 Einstein (German Jewish)> Photo electric effect  > Particle nature of light/radiation > 

Photon. 

 1905 Einstein Special Theory of Relativity > Non existence of aether; dependence of mass, 

length and time on velocity. 

 1913 Niels Bohr (Danish) > Model of Hydrogen Atom> quantisation of angular momentum of 

atomic electron > explanation of atomic stability, Balmer formula, atomic spectroscopy. 

 1923 New observations: Compton (American) Effect >  recoil of electron which scatters X-ray. 

X-ray photon has momentum ℎ𝜈 𝑐⁄  > Radiation has particle nature. 

 1923 de Broglie (French) hypothesis: Electron and all matter have wave nature. 

 1925 Heisenberg (German): Matrix Formulation. 

 1926 Schrodinger (German): Schrodinger Equation > Wave mechanics. 

 1927 Heisenberg: Uncertainty Relation (Earle Hesse Kennard in late 1927 & Hermann Wey in 

1928 gave the formal relation involving standard deviations as uncertainties: 𝜎௫𝜎௣ ≥ ℏ 2⁄ ). 

 1923-27 Davisson (American) and Germer (American) experiment and explanation > 

Diffraction of electrons > Confirmation of wave nature of electrons i.e. de Broglie hypothesis. 

 1927 Max Born (German Jewish) probabilistic interpretation of wave mechanics > 𝑃(𝑥, 𝑡)𝑑𝑥 =

∫ |𝜓(𝑥, 𝑡)|ଶ𝑑𝑥
௫భ

௫భ
, where 𝑥ଵ and 𝑥ଶ are the limits within which the particle exists. In 3D 

𝑃(𝑟, 𝑡)𝑑𝑥 = ∭|𝜓(𝑟, 𝑡)|ଶ𝑑𝜏, where the integration is over the region of space in which the 

particle exists. 

 1928 Paul Dirac (English): Relativistic Quantum Mechanics > Prediction of Positron > Proof 

in 1932;  

 1939 bra ket notation by Dirac: Both Heisenberg’s matrix formulation and Schrodinger’s wave 

mechanics formulation can be handled with this.   
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1.3.1 Blackbody Radiation 

 

Quantum Mechanics Concepts and Applications - Nouredine Zettili 

 

1879 J. Stefan (Carinthian Slovene) established from Tyndall’s experimental results of IR emissions 

by platinum filament and its colour:  

Per unit area of the surface of a radiating solid at absolute temperature 𝑇 radiates normally 

(perpendicularly) a power (or energy per second)- 

𝑃 = 𝑎𝜎𝑇ସ    ……….. (1) 

where 𝜎 = 5.670367 × 10ି଼ Wmଶ Kିସ is called Stefan’s constant; 𝑎 is a coefficient ≤ 1. For ideal 

blackbody 𝑎 = 1. Equation (1) is called Stefan’s law or Stefan-Boltzmann Law. 

In 1884 a theoretical derivation of the law was done by Boltzmann (German). 

Up to a temperature 1535 K this law accurately matches experimental observations.  But at higher 

temperature deviation from experimental results are observed. 

1893 Wien ( Wilhelm Wien, 1864-1928, German Physicist) displacement law: 

𝜆௠௔௫𝑇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≈ 2900 𝜇𝑚. 𝐾 

1894 Wien energy density distribution: 

Wien proposed (from thermodynamic consideration) that, Stefan-Boltzmann law and Wien 

displacement law can be derived if the energy density of blackbody radiation at temperature 𝑇 per unit 

wavelength at 𝜆 i.e. 𝑢(𝜆, 𝑇) must be given by a relation: 

𝑢(𝜆, 𝑇)𝑑𝜆 =
௔

ఒఱ 𝑓(𝜆𝑇)𝑑𝜆, where  𝑓(𝜆𝑇) is any function of 𝜆𝑇.  
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From some arbitrary assumptions regarding mechanisms of emission he proposed that 𝑓(𝜆𝑇) =

𝑎𝑒ି௕ ఒ்⁄  and so  

𝑢(𝜆, 𝑇)𝑑𝜆 =
௔

ఒఱ 𝑒ି௕ ఒ்⁄ 𝑑𝜆. 

In terms of frequency 𝑢(𝜈, 𝑇)𝑑𝜈 = 𝐴𝜈ଷ𝑒ିఉఔ ்⁄ 𝑑𝜈. 

Unit of 𝑢(𝜈, 𝑇) is 𝐽𝑚ିଷ𝐻𝑧ିଵ or 𝐽𝑚ିଷ𝑠 and unit of 𝑢(𝜆, 𝑇) is 𝐽𝑚ିସ. 

Constants 𝑎, 𝑏 or 𝐴, 𝛽 were determined to fit these equations to experimental curves. 

Failure of Wien distribution: Wien’s distribution satisfies experimental curve at lower wavelengths or 

higher frequencies but fails to explain them at higher wavelengths or lower frequencies. [In those days 

producing radiation of higher frequencies or lower wavelengths was not easy.] Thus Wien’s 

distribution was insufficient to satisfy observations. 

1900 Rayleigh’s (Lord Rayleigh, 1842-1919, British physicist) energy density distribution: 

Rayleigh assumed that in the cavity of a blackbody radiation exists in the form of electromagnetic 

standing waves with their nodes at the walls of the cavity. Density of states (or vibrational modes) of 

these standing waves i.e. number of states (or modes) per unit volume per frequency range of such 

standing waves is equal to 
଼గఔమ

௖య .  

The electromagnetic standing waves are excited by the linear oscillation of the tiny electric dipoles of 

atomic or molecular dimension in the walls of the cavity. The energy of an oscillating dipole can have 

any value between 0 & ∞ i.e. the energy spectrum of an oscillator is continuous. At temperature 𝑇, the 
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number of electric dipoles having energy 𝐸 is given by M-B statistics, i.e. 𝑁(𝐸) = 𝑁଴𝑒ିா ௞்⁄ , where 

𝑁଴ is the number of oscillators with zero energy and 𝑘 (= 1.38 𝐽𝐾ିଵ) is Boltzmann constant. Then it 

can be shown that at temperature  𝑇, the average energy of the oscillators in the walls is 〈𝐸〉 = 𝑘𝑇.  

 
Quantum Mechanics Concepts and Applications - Nouredine Zettili 

 

In equilibrium the energy distribution of the standing waves is same as the energy distribution of the 

oscillators over the frequency range. Therefore the average energy of the vibrational modes of the 

standing waves will also be 〈𝐸〉 = 𝑘𝑇.   

So, according to Rayleigh, the energy density distribution is given by:  

𝑢(𝜈, 𝑇)𝑑𝜈 = 𝑛(𝜈, 𝑇)〈𝐸〉𝑑𝜈 =
଼గఔమ

௖య 𝑘𝑇𝑑𝜈;        

Or, in terms of wavelength  𝑢(𝜆, 𝑇)𝑑𝜆 =
଼గ

ఒర 𝑘𝑇𝑑𝜆. 

Density of states of vibrations in a cubical cavity of side 𝑳 filled with a continuous elastic medium: 

3D wave equation: 
డమట

డ௫మ +
డమట

డ௬మ +
డమట

డ௫మ =
ଵ

௖మ

డమట

డ௧మ   …………(A) 

Standing wave solution: 𝜓(𝑥, 𝑦, 𝑧, 𝑡) = 𝐴𝑠𝑖𝑛 ቀ
௡ೣగ௫

௅
ቁ 𝑠𝑖𝑛 ቀ

௡೤గ௬

௅
ቁ 𝑠𝑖𝑛 ቀ

௡೥గ௭

௅
ቁ 𝑐𝑜𝑠(2𝜋𝜈𝑡).  ……..(B) 

𝑛௫ , 𝑛௬, 𝑛௭ are integers ≥ 1. A vibrational mode is determined by the set of integers ൫𝑛௫ , 𝑛௬ , 𝑛௭൯.  

What is the number of such modes within frequency range 𝝂  𝒕𝒐 𝝂 + 𝒅𝝂 ? 

Consider a coordinate system in which coordinates are the positive integers and zero. This is the first 

octant of the 3D integer space. Each point in this space will be at unit distance from its nearest 

neighbours; in other words each point will share unit volume of this space.   
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Substituting (B) in (A) and simplifying: 𝑛௫
ଶ + 𝑛௬

ଶ + 𝑛௭
ଶ =

ସ௅మఔమ

௖మ = 𝑅ଶ (𝑠𝑎𝑦).  

Above equation represents the portion of a sphere of radius 𝑅 =
ଶ௅

௖
 in the first octant of the integer 

space. In this space a spherical shell between radii 𝑅 and 𝑅 + 𝑑𝑅 corresponds to the frequency range 𝜈 

to 𝜈 + 𝑑𝜈. Volume of such a shell in integer space is:  

1

8
× 4𝜋𝑅ଶ𝑑𝑅 =

1

2
𝜋𝑅ଶ𝑑𝑅 =

1

2
𝜋 ×

4𝐿ଶ𝜈ଶ

𝑐ଶ
×

2𝐿

𝑐
𝑑𝜈 =

4𝜋𝐿ଷ𝜈ଶ

𝑐ଷ
𝑑𝜈 

The number of coordinate points ൫𝑛௫, 𝑛௬, 𝑛௭൯ in this shell will also be 
ଵ

ଶ
𝜋𝑅ଶ𝑑𝑅, since each point shares 

unit volume in integer space. But this is equal to the number of vibrational modes in the frequency 

range 𝜈 to 𝜈 + 𝑑𝜈. Thus the number of modes in the frequency range 𝜈 to 𝜈 + 𝑑𝜈 per unit volume of the 

cavity will be  

1

𝐿ଷ
×

4𝜋𝐿ଷ𝜈ଶ

𝑐ଷ
𝑑𝜈 =

4𝜋𝜈ଶ

𝑐ଷ
𝑑𝜈 

Now unpolarised electromagnetic waves contains two types of circularly polarised waves with the plane 

of polarisation rotating in clockwise and anticlockwise sense. Now two modes of the electromagnetic 

standing waves with plane of polarisation rotating in opposite sense but identical in all other respect 

will have same set of ൫𝑛௫, 𝑛௬, 𝑛௭൯, i.e. each point in the integer space represents two states. Therefore 

number of states per unit volume of the cavity in the frequency range 𝜈 to 𝜈 + 𝑑𝜈 will be  

 

𝑛(𝜈)𝑑𝜈 = 2 ×
4𝜋𝜈ଶ

𝑐ଷ
𝑑𝜈 =

8𝜋𝜈ଶ

𝑐ଷ
𝑑𝜈. 

 𝑛(𝜈) =
8𝜋𝜈ଶ

𝑐ଷ
… … … … . (𝐶) 

 is called the density of states. 

Though for simplicity here we derive this result for a cubical medium, it is applicable to any shape.  

Average energy per vibrational mode: 

According to M-B statics the number of oscillators (or vibrational states in this case) having energy 𝐸 

at temperature 𝑇 is 𝑁ா = 𝑁଴𝑒ିா ௞்⁄ , where 𝑁଴ is the number of oscillators in the state of zero energy 

(ground state) and 𝑘 is Boltzmann constant (𝑘 = 1.38 × 10ିଶଷ𝐽𝐾ିଵ). Therefore for a continuous 

energy distribution: 

〈𝐸〉 =
∫ 𝐸𝑁଴𝑒ିா ௞்⁄ 𝑑𝐸

ஶ

଴

∫ 𝑁଴𝑒ିா ௞்⁄ 𝑑𝐸
ஶ

଴

=
(𝑘𝑇)ଶ ∫ (𝐸 𝑘𝑇⁄ )𝑒ିா ௞்⁄ 𝑑(𝐸 𝑘𝑇⁄ )

ஶ

଴

(𝑘𝑇) ∫ 𝑒ିா ௞்⁄ 𝑑(𝐸 𝑘𝑇⁄ )
ஶ

଴

= 𝑘𝑇
Γ(2)

Γ(1)
= 𝑘𝑇  … ..  (𝐷). 

Rayleigh formula satisfies experimental curves at higher wavelengths or lower frequencies but deviates 

badly from the experimental curves towards lower wavelengths or higher frequencies i.e. towards 

ultraviolet region of the spectrum. This failure is known as ultraviolet catastrophe.  
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Particle nature of wave 

1905 Planck blackbody radiation formula: 

Planck’s quantisation rule / Planck’s quantum hypothesis / Planck’s postulate: According to classical 

mechanics, a harmonic oscillator of frequency 𝜈 can have any amount of energy 𝐸 [ = 4𝜋ଶ𝑚𝑎ଶ𝜈ଶ], 

which is proportional to the square of its amplitude 𝑎. And it can have any energy between 0 & ∞. But 

to explain blackbody radiation Planck made the following revolutionary assumptions: 

i) An oscillator frequency 𝜈 in the wall of the blackbody can have only discrete energies given 

by 𝜀௡ = 𝑛ℎ𝜈, where 𝑛 = 0,1,2 … .. and ℎ is a constant, which was determined by him to fit 

his formula with the experimental distribution curves of blackbody radiation.  

ii) When an oscillator of frequency 𝜈 absorbs or emits energy in the form of radiation its 

energy can change only in the steps of ℎ𝜈. Since the radiation absorbed or emitted by an 

oscillator have same frequency as that of the oscillator therefore it follows from Planck 

assumptions that an oscillator of frequency 𝜈 can absorb or emit radiation of frequency 𝜈 

and this emitted or absorbed radiation can have only an amount of energy ℎ𝜈, no less no 

more. 

Regarding the nature and density of states of the radiation inside the cavity of blackbody, Planck’s 

assumption was same as that of Rayleigh.  

 

Average energy of the oscillators of frequency 𝝂 in the walls of the blackbody:  

Oscillators of frequency 𝜈 have discrete energies 𝜀௡ = 𝑛ℎ𝜈, 𝑛 = 0,1,2… . According to M-B statics the 

number of such oscillators at temperature 𝑇 is 𝑁௡ = 𝑁଴𝑒ିா೙ ௞்⁄ = 𝑁଴𝑒ି௡௛ఔ ௞்⁄ . Therefore the average 

energy of the oscillators of frequency 𝜈 will be: 

〈𝜀ఔ〉 =
∑ 𝜀௡𝑁଴𝑒ିఌ೙ ௞்⁄ஶ

௡ୀ଴

∑ 𝑁଴𝑒ିఌ೙ ௞்⁄ஶ
௡ୀ଴

=
∑ 𝜀௡𝑒ିఌ೙ ௞்⁄ஶ

௡ୀ଴

∑ 𝑒ିఌ೙ ௞்⁄ஶ
௡ୀ଴

. 

Note that the integrations of equation (D) have been replaced here by summations since in this case 

discrete energies are assumed for the oscillators in place of continuous energies of the oscillators in 

Rayleigh theory. 

Now 

〈𝜀ఔ〉 =
∑ 𝜀௡𝑒ିఌ೙ ௞்⁄ஶ

௡ୀ଴

∑ 𝑒ିఌ೙ ௞்⁄ஶ
௡ୀ଴

=
∑ 𝑛ℎ𝜈𝑒ି௡௛ఔ ௞்⁄ஶ

௡ୀ଴

∑ 𝑒ି௡௛ఔ ௞்⁄ஶ
௡ୀ଴

=
ℎ𝜈𝑒ି௛ఔ ௞்⁄ + 2ℎ𝜈𝑒ିଶ௛ఔ ௞்⁄ + 3ℎ𝜈𝑒ିଷ௛ఔ ௞⁄ + ⋯

1 + 𝑒ି௛ఔ ௞்⁄ + 𝑒ିଶ௛ఔ ௞்⁄ + 𝑒ିଷ௛ఔ ௞்⁄ + ⋯
 

=
ℎ𝜈𝑥(1 + 2𝑥 + 3𝑥ଶ + 4𝑥ଷ … )

1 + 𝑥 + 𝑥ଶ + 𝑥ଷ …
  (𝑤ℎ𝑒𝑟𝑒 𝑥 = 𝑒ି௛ఔ ௞்⁄ ) 

= ℎ𝜈𝑥
(1 − 𝑥)ିଶ

(1 − 𝑥)ିଵ
= ℎ𝜈𝑥

1

1 − 𝑥
=

ℎ𝜈

1
𝑥 − 1

=
ℎ𝜈

𝑒௛ఔ ௞்⁄ − 1
. 
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Since the radiation in the cavity of the blackbody is in equilibrium with the oscillators in the wall so 

this above expression will also give the average energy of the vibrational modes of the standing waves 

in the cavity. 

The number of vibrational modes or states per unit volume of the cavity in the frequency range 𝜈 to 

𝜈 + 𝑑𝜈 can be determined as before and is given by:  

𝑛(𝜈)𝑑𝜈 =
଼గఔమ

௖య 𝑑𝜈.  

Thus the energy distribution of the radiation is given by: 𝑢(𝜈)𝑑𝜈 = 〈𝜀ఔ〉𝑛(𝜈)𝑑𝜈 =
଼గఔమ

௖య ∙
௛ఔ

௘೓ഌ ೖ೅⁄ ିଵ
𝑑𝜈.  

𝑢(𝜈)𝑑𝜈 =
8𝜋ℎ𝜈ଷ

𝑐ଷ
∙

1

𝑒௛ఔ ௞்⁄ − 1
𝑑𝜈 … … … … (1) 

In terms of wavelength: 

𝑢(𝜆)𝑑𝜆 =
8𝜋ℎ𝑐

𝜆ହ
∙

1

𝑒௛௖ ఒ௞்⁄ − 1
𝑑𝜆 … … … … … (2) 

Note that the discreteness of vibrational modes indexed by ൫𝑛௫ , 𝑛௬, 𝑛௭൯ arises here from purely classical 

considerations. But the discreteness of possible energies of an oscillator is due to the assumptions of a 

new type, called Planck’s quantum conditions.  

Fitting his equation with experimental curves Planck determined the value of ℎ. Its value is 6.626 ×

10ିଷସ 𝐽. 𝑠 and it is a universal constant of immense importance as was revealed later years with the 

advancement of quantum mechanics.   

Derivations from Planck’s law:  

Stefan-Boltzmann law: Total energy (in all wavelength range) per unit volume of the cavity of a black 

body is  

𝑢 = න 𝑢(𝜈)𝑑𝜈 =

ஶ

଴

8𝜋ℎ

𝑐ଷ
න

𝜈ଷ

𝑒௛ఔ ௞்⁄ − 1
𝑑𝜈

ஶ

଴

=
8𝜋ℎ

𝑐ଷ ൬
𝑘𝑇

ℎ
൰

ସ

න
𝑥ଷ

𝑒௫ − 1
𝑑𝑥

ஶ

଴

   [𝑤ℎ𝑒𝑟𝑒 𝑥 = ℎ𝜈 𝑘𝑇⁄ ] 

=
8𝜋ℎ

𝑐ଷ ൬
𝑘𝑇

ℎ
൰

ସ

න 𝑥ଷ𝑒ି௫(1 − 𝑒ି௫)ିଵ𝑑𝑥

ஶ

଴

=
8𝜋ℎ

𝑐ଷ ൬
𝑘𝑇

ℎ
൰

ସ

න 𝑥ଷ𝑒ି௫(1 + 𝑒ି௫ + 𝑒ିଶ௫ + 𝑒ିଷ௫ + ⋯ )𝑑𝑥

ஶ

଴

 

=
8𝜋ℎ

𝑐ଷ ൬
𝑘𝑇

ℎ
൰

ସ

න 𝑥ଷ(𝑒ି௫ + 𝑒ିଶ௫ + 𝑒ିଷ௫ + 𝑒ିସ௫ + ⋯ )𝑑𝑥

ஶ

଴

=
8𝜋ℎ

𝑐ଷ ൬
𝑘𝑇

ℎ
൰

ସ

෍ න 𝑥ଷ𝑒ି௣௫𝑑𝑥

ஶ

଴

ஶ

௣ୀଵ

 

=
8𝜋ℎ

𝑐ଷ ൬
𝑘𝑇

ℎ
൰

ସ

෍
1

𝑝ସ
න (𝑝𝑥)ସିଵ𝑒ି௣௫𝑑(𝑝𝑥)

ஶ

଴

ஶ

௣ୀଵ

=
8𝜋ℎ

𝑐ଷ ൬
𝑘𝑇

ℎ
൰

ସ

෍
1

𝑝ସ
Γ(4)

ஶ

௣ୀଵ

=
8𝜋ℎ

𝑐ଷ ൬
𝑘𝑇

ℎ
൰

ସ

෍
3!

𝑝ସ

ஶ

௣ୀଵ

 

=
48𝜋ℎ

𝑐ଷ ൬
𝑘𝑇

ℎ
൰

ସ 𝜋ସ

90
=

8𝜋ହ𝑘ସ

15𝑐ଷℎଷ
𝑇ସ 
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It can be shown that the energy radiated normally per unit area from a blackbody is  𝐸 = 𝑢
௖

ସ
. Thus: 

𝐸 =
8𝜋ହ𝑘ସ

15𝑐ଷℎଷ ∙
𝑐

4
𝑇ସ = ቆ

2𝜋ହ𝑘ସ

15𝑐ଶℎଷቇ 𝑇ସ  𝑜𝑟,   𝐸 ∞ 𝑇ସ. 

Wien displacement law: 

𝑢(𝜆) =
8𝜋ℎ𝑐

𝜆ହ
∙

1

𝑒௛௖ ఒ௞்⁄ − 1
=

8𝜋ℎ𝑐

𝑧(𝜆)
, 𝑠𝑎𝑦.      𝑊ℎ𝑒𝑟𝑒       𝑧(𝜆) = 𝜆ହ൫𝑒௛௖ ఒ௞்⁄ − 1൯. 

The value of 𝜆 for which 𝑢(𝜆) is maximum is obtained from the condition: 

𝜕𝑢(𝜆)

𝜕𝜆
ቤ

ఒୀఒ೘ೌೣ

= 0.         This is equivalent to:        
𝜕𝑧(𝜆)

𝜕𝜆
ቤ

ఒୀఒ೘ೌೣ

= 0 

𝑂𝑟, 5𝜆௠௔௫
ସ ∙ ൫𝑒௛௖ ఒ೘ೌೣ௞்⁄ − 1൯ − 𝜆௠௔௫

ହ ∙
ℎ𝑐

𝜆௠௔௫
ଶ𝑘𝑇

𝑒௛௖ ఒ೘ೌೣ௞்⁄ = 0; 

𝑂𝑟, 1 − 𝑒ି௛௖ ఒ೘ೌೣ௞்⁄ =
ℎ𝑐

5𝜆௠௔௫𝑘𝑇
; 

Or, with  
௛௖

ఒ೘ೌೣ௞்
= 𝑥, this equation can be written as:  1 − 𝑒ି௫ =

௫

ହ
 

This equation can not be solved analytically, but can be solved numerically.  Or by writing as a pair of 

equation: 𝒚 = 𝟏 − 𝒆ି𝒙;   and  𝒚 =
𝒙

𝟓
  it can also be solved graphically. The curves represented by these 

equations intersect for 𝑥 ≈ 4.965. 

𝑇ℎ𝑢𝑠 
ℎ𝑐

𝜆௠௔௫𝑘𝑇
≈ 4.965;   

⇒ 𝜆௠௔௫𝑇 =
ℎ𝑐

4.965𝑘
=

6.626 × 10ିଷସ × 3 × 10଼

4.965 × 1.38 × 10ିଶଷ
≈ 0.0029 𝑚. 𝐾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Wien and Rayleigh-Jeans distribution law:  

Planck’s law: 𝑢(𝜈)𝑑𝜈 =
8𝜋ℎ𝜈ଷ

𝑐ଷ
∙

1

𝑒௛ఔ ௞்⁄ − 1
𝑑𝜈 

At high frequencies   𝑒௛ఔ ௞்⁄ − 1 ≈ 𝑒௛ఔ ௞்⁄  

𝑆𝑜 𝑢(𝜈)𝑑𝜈 =
8𝜋ℎ𝜈ଷ

𝑐ଷ
∙ 𝑒ି௛ఔ ௞்⁄ 𝑑𝜈 = 𝐴𝜈ଷ𝑒ିఉఔ ்⁄ 𝑑𝜈   [Wien’s distribution law. ] 

 𝑤ℎ𝑒𝑟𝑒 𝐴 =
8𝜋ℎ

𝑐ଷ
    and  𝛽 = ℎ 𝑘⁄  𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠. 

At low frequencies 𝑒௛ఔ ௞்⁄ − 1 = (1 + ℎ𝜈 𝑘𝑇⁄ +
(௛ఔ ௞்⁄ )మ

ଶ!
+

(௛ఔ ௞்⁄ )య

ଷ!
… ) − 1 ≈ ℎ𝜈 𝑘𝑇⁄  

So 𝑢(𝜈)𝑑𝜈 =
଼గ௛ఔయ

௖య ∙
ଵ

௛ఔ ௞்⁄
𝑑𝜈 =

଼గఔమ௞்

௖య 𝑑𝜈   [Rayleigh-Jeans law]. 
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Problems: 

JAM 2020 

 

Ans.: Solve yourself.  

JAM 2017  

 

Ans.: 𝑢(𝜈) =
଼గ௛ఔయ

௖య ∙
ଵ

௘೓ഌ ೖ೅⁄ ିଵ
 

 
௨(ଶఔ)

௨(ఔ)
=

଼గ௛(ଶఔ)య

௖య ∙
ଵ

௘మ೓ഌ ೖ೅⁄ ିଵ
∙

௖య

଼గ௛ఔయ ∙
௘೓ഌ ೖ೅⁄ ିଵ

ଵ
= 8 ∙

௘೓ഌ ೖ೅⁄ ିଵ

௘మ೓ഌ ೖ೅⁄ ିଵ
= 8 ∙

௘೓ഌ ೖ೅⁄ ିଵ

൫௘೓ഌ ೖ೅⁄ ିଵ൯൫௘೓ഌ ೖ೅⁄ ାଵ൯
 

 = 8 ∙
ଵ

௘೓ഌ ೖ೅⁄ ାଵ
= 8 ∙ ൫𝑒௛ఔ ௞்⁄ + 1൯

ିଵ
  

 
௨(ଶఔ)

௨(ఔ)
∞൫𝑒௛ఔ ௞்⁄ + 1൯

ିଵ
   ⇒   (𝐵). 

JAM 2014 

 

Ans.: ቂ
డ

డఒ
൫𝑢்(𝜆)൯ቃ

ఒ೘ೌೣ

= 0 

So, from  𝑢்(𝜆) =
ఈ

௖యఒఱ 𝑒ିఉ ఒ்⁄ ,     we have ቂ−
ହఈ

௖యఒల 𝑒ିఉ ఒ்⁄ +
ఈఉ

௖యఒళ்
𝑒ିఉ ఒ்⁄ ቃ

ఒ೘ೌೣ

= 0 

⇒ −5 +
ఉ

ఒ೘ೌೣ்
= 0                 ⇒ 𝜷 = 5𝜆௠௔௫𝑇 = 5 × 2.9 × 10ିଷ = 𝟎. 𝟎𝟏𝟒𝟓 𝒎. 𝑲  

𝜎𝑇ସ = 𝐸  

 =
௨೅௖

ସ
=

௖

ସ
∫ 𝑢்(𝜆)𝑑𝜆

ஶ

଴
=

௖

ସ

ఈ

௖య ∫
ଵ

ఒఱ 𝑒ିఉ ఒ்⁄ 𝑑𝜆
ஶ

଴
 

 Let 𝛽 𝜆𝑇⁄ = 𝑥. Then  𝑑𝑥 = −(𝛽 𝜆ଶ𝑇⁄ )𝑑𝜆     ⇒ 𝑑𝜆 = −
ఒమ்

ఉ
𝑑𝑥. 
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 𝜎𝑇ସ = 𝐸 = −
்

ఉ

௖

ସ

ఈ

௖య ∫
ଵ

ఒయ 𝑒ି௫𝑑𝑥
଴

ஶ
= ቀ

்

ఉ
ቁ

ସ ௖

ସ

ఈ

௖య ∫ ቀ
ఉ

ఒ்
ቁ

ଷ
𝑒ି௫𝑑𝑥

ஶ

଴
= ቀ

்

ఉ
ቁ

ସ ௖

ସ

ఈ

௖య ∫ 𝑥ଷ𝑒ି௫𝑑𝑥
ஶ

଴
  

 = ቀ
்

ఉ
ቁ

ସ ௖

ସ

ఈ

௖య ∙ 6 =
ଷ

ଶ
ቀ

்

ఉ
ቁ

ସ ఈ

௖మ  

 ⇒
ଷ

ଶ
ቀ

்

ఉ
ቁ

ସ ఈ

௖మ = 𝜎𝑇ସ     ⇒
ଷ

ଶ

ఈ

௖మఉర = 𝜎    ⇒ 𝛼 =
ଶ௖మఙఉర

ଷ
 

⇒ 𝛼 =
ଶ×൫ଷ×ଵ଴ఴ൯

మ
×ହ.଺଻×ଵ଴షఴ×(𝟎.𝟎𝟏𝟒𝟓)ర

ଷ
=

ଶ×ଽ×ହ.଺଻×(𝟏.𝟒𝟓)ర

ଷ
=  150.3856. 

JAM 2013 

 

Ans.: 𝜆௠௔௫𝑇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  ⇒ (𝜆௠௔௫)ଶ𝑇ଶ = (𝜆௠௔௫)ଵ𝑇ଵ   ⇒ (𝜆௠௔௫)ଶ =
(ఒ೘ೌೣ)భ భ்

మ்
=

ఒ்

ସ்
=

ఒ

ସ
  ⇒ (𝐷). 

JAM 2012 

 

Ans.:  𝑢(𝜆) =
଼గ௛௖

ఒఱ ∙
1

𝑒ℎ𝑐 ഊ𝑘𝑇⁄ −1
=

଼గ௛

ఒఱ ∙
1

𝑒ℎ𝑐 ೖഊ𝑇⁄ −1
 

 For 𝜆 = 𝜆௠௔௫    we have  𝑢(𝜆௠௔௫) =
଼గ௛௖

ఒ೘ೌೣ
ఱ ∙

1

𝑒ℎ𝑐 ೖഊ೘ೌೣ𝑇⁄ −1
 . 

 Also 𝜆௠௔௫𝑇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  ⇒ [𝜆௠௔௫]ଶ𝑇ଶ = [𝜆௠௔௫]ଵ𝑇ଵ   ⇒
[ఒ೘ೌೣ]భ

[ఒ೘ೌೣ]మ
= మ்

భ்
 

 
௨([ఒ೘ೌೣ]మ)

௨([ఒ೘ೌೣ]భ)
=

଼గ௛௖

[ఒ೘ೌೣ]మ
ఱ ∙

1

𝑒ℎ𝑐 ೖ[ഊ೘ೌೣ]మ೅మ⁄ −1
∙

[ఒ೘ೌೣ]భ
ఱ

଼గ௛௖
∙

𝑒ℎ𝑐 ೖ[ഊ೘ೌೣ]భ೅భ⁄ −1

1
= ቀ

[ఒ೘ೌೣ]భ

[ఒ೘ೌೣ]మ
ቁ

ହ
= ቀ మ்

భ்
ቁ

ହ
 

 = 2ହ = 32   ⇒ (𝐷). 

JAM 2007: 

 

Ans.: Clearly the temperatures of the two blackbody will be different. If  𝑇ଵ and 𝑇ଶ  are the 
 temperatures then: 

 భ்

మ்
=

[ఒ೘ೌೣ]మ

[ఒ೘ೌೣ]భ
=

଺଴଴

ଶ଴଴
= 3. 

 
௉భ

௉మ
=

ఙ భ்
ర

ఙ మ்
ర = ቀ భ்

మ்
ቁ

ସ
= 3ସ = 81. 


